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> ?ntroduction 

The dynamic acquisition and use of remote 
computers requires policy-driven resource 
management mechanisms that can establish new 
computational environments without human 
intervention [1]. Grid technologies such as the 
GRAM remote access protocol [2], single-sign-on 
[3], and agreement negotiation [4] are significant 

steps towards this goal. However, the problem of 
establishing and managing execution environments 
on remote computers remains. The common 
approach of using static user accounts has high 
administrative costs and creates environments that do 
not reflect dynamically changing policies, allow for 
customized execution environments, or provide QoS 
enforcement capabilities. Experiments show that 
virtual machine technology [5-8] can be used to 
address some of these issues, but no standardized 
mechanisms have been defined for interacting with 
such virtual machines.  

We believe that the solution to these problems is 
to introduce abstractions, protocols, and tools that 
allow remote execution environments to be created 
and managed as first-class entities. Thus, users will 
be able to negotiate the creation of new execution 
environments, administrators will be able to specify 
the policies that govern their use, and various entities 
can be authorized for monitoring and management. 
We expect that in implementing such ideas, we can 
exploit recent advances in virtual machine and 
sandbox technologies.  

These observations motivate the work presented 
in this article, which comprises three distinct but 
interrelated thrusts. 

First, we show how dynamic virtual environments 
(DUEs) can be modeled as Grid services, thus 
allowing a client to create, configure, and manage 
remote execution environments using common 
protocols. 

Second, we show how such DUEs can be 
implemented via a variety of technologies, including 
dynamic accounts and virtual machines, to obtain 
access to a range of virtualization and resource 
management functions. We also examine how DUEs 
can be implemented within the context of a particular 
Grid middleware framework, Globus Toolkit 3 
(GT3). 



Third, we present an experimental evaluation of 
various DUE implementation technologies. Our 
results allow us to evaluate the impact of technology 
choices both in quantitative terms (e.g., 
computational costs and resource usage) and also 
respect to other qualitative concerns that arise in Grid 
contexts.  

The dynamic creation of remote environments as 
user accounts has been previously investigated [9-
13], as has the use of virtual machines to model 
virtual resources [8, 14, 15]. Our work is 
distinguished by its focus on creating, configuring 
and managing execution environments as first class 
entities, that can be implemented via different 
technologies as dictated by the needs of sites and 
organizations. 

@ 3yn'$ic 6irtu'l 7n8iron$ents 

We speak first to the DUE abstraction, its 
representation in terms of Grid service interfaces, and 
our prototype implementation within GT3. 

Our goal in introducing the DUE abstraction is to 
codify the interactions required for a client to create, 
monitor, manage, and ultimately destroy a remote 
execution environment. Our approach is to model 
individual DUEs as stateful Web services [16] (in 
OGSI [17], our focus here) or, as we shall consider in 
future work, as WS-Resources [18]. We adopt 
OGSI/WSRF because DUE management operations 
map conveniently to OGSI/WSRF mechanisms. In 
particular, OGSI/WSRF lifetime management 
mechanisms can be used to manage the creation and 
destruction of DUEs, and OGSI/WSRF state 
representation and inspection mechanisms can be 
used to provide access to descriptions of DUE 
properties such as quality of protection, resource 
limits, and configuration. 

@A> Bre'ting 3yn'$ic 6irtu'l 7n8iron$ents 

DUEs are represented as Grid services and 
created by DUE factories. As shown in Figure 1, a 
factory first authorizes the request to create a DUE 
with the requested properties. An authorization 
failure results in an exception. On success, the 
factory performs the following actions: (1) creates a 
DUE Grid service, (2) initializes its implementation 
(this could for example involve creating a Unix 
account or a new J2EE container) and sets its 
properties (such as its termination time), and (3) 
records access and other usage policy for the newly 
created DUE. As a result of the creation process a 

Grid service handle (GSH) representing the newly 
created DUE is returned to the client.  

DUE creation, configuration, and deployment 
should in principle be separate. However, in our 
current prototype DUEs are configured and deployed 
at creation time. The creation process is securely 
logged to allow for audit.  

DUE termination is managed via the use of OGSI 
lifetime management mechanisms, which allow the 
user to request both explicit destruction and implicit 
(soft-state, or lifetime based) termination. 
Termination involves cleaning up the state associated 
with this DUE: policies may be revoked and 
information relevant to DUE erased. Termination 
might involve deleting (or returning to a pool) a 
dynamically created account or virtual machine. 

@A@ 3yn'$ic 6irtu'l 7n8iron$ent &er8ices  

The DUEService is a Grid interface to a transient, 
dynamically created execution environment. 
DUEService shares the properties of any other Grid 
service: it is identified by a handle, subject to soft-
state lifetime management, and exposes its properties 
(such as the disk space or memory associated with 
the environment, and/or installed software) through 
Service Data Elements (SDEs). The interface allows 
the client to manage the DUE, by for example 
extending its original termination time, requesting 
more disk space, or installing software. These 
requests are authorized in the context of credentials 
that may be dynamically granted and adjusted [19].  

@AC 367s 'nd <rid Desource M'n'ge$ent  

The process of job submission against a DUE is 
illustrated in Figure 1:  
1. The client sends a request for DUE creation to 

the factory. The request may include the 
properties and lifetime of the DUE, as well as 
the client’s credentials. 

2. The factory authorizes the request. If the client is 
not authorized to create the environment as 
requested, an exception is thrown. Otherwise, a 
DUE service is instantiated. 

3. At instantiation, the DUE service creates an 
execution environment in an implementation-
dependent way. New policy is recorded allowing 
or restricting access and management of the 
newly created environment.  

4. A handle to the DUE service is returned to the 
client. 



5. At any time during the DUE lifetime, authorized 
clients may inspect or manage its properties.  

6. At any time during the DUE lifetime, authorized 
clients may perform operations on the DUE (for 
example, request execution of programs) as 
authorized by the associated access policy. 

7. When the DUE service is destroyed, all 
associated state is deleted.  

 

Figure 1: Interactions of DUEs with Grid resource 
management: the policy evaluation points (PEP) 
authorize client’s requests. 

@AF ?$ple$ent'tion of 367s Iithin <TC 

Creating an execution environment on a remote 
host is a sensitive operation requiring special 
privileges; it is therefore critical that it should be 
carried out securely. In our implementation the 
execution environment is created by the DUE service 
running under a reserved Unix account (called 
#,$.?7). The creation request (as well as management 
requests on the DUE service) is authorized by an 
application-specific authorization based on the 
requestor’s Grid credential and a callout to an access 
control list. The DUE service then uses a setuid 
program, executable only by #,$.?7, that validates its 
arguments and refuses to undertake any actions 
contrary to a predefined policy (for example, only 
accounts within a prespecified UID range may be 
created and destroyed), thus limiting risk to other 
accounts on the system should the #,$.?7 account be 
compromised. 

The access policy to the execution environment is 
recorded in the GT3 gridmapfile. Although more 
complex policies are envisioned, in the current 
implementation the policy simply gives the right to 
use the environment to the Grid entity that created it. 
For the purposes of audit, the creation process is 
securely logged using the GT3 logging mechanism. 

DUE termination implies that the entire DUE 
state is cleaned in an implementation-specific way. In 

addition, any state associated with the Grid 
infrastructure has to be cleaned. We remove access 
policies from the gridmapfile, and clear entries from 
the GT3 port mapping file which assists in hosting 
environment restoration in case it was not cleanly 
shut down. This eliminates attempts to recreate the 
environment for nonexistent (or worse yet, different) 
user. 

In order to integrate DUEs with the GT3’s Grid 
Resource Management System (GRAM) [2], we 
extended the GRAM protocol to include a handle to a 
specific DUE with the description of remote actions 
to be performed. For backward compatibility, if the 
handle is not presented, then the first relevant 
mapping in the gridmapfile is used. We also changed 
its implementation to integrate DUE access policies 
into its authorization mechanism.  

Introducing DUEs splits the process of job 
submission into two phases: creation and deployment 
of a DUE and job submission against that 
environment. While creation of a DUE simply 
replaces the process of obtaining an user account, it 
can still be seen as complex by users who are 
interested in executing things quickly on new 
resources. For this reason, we have also provided a 
simplified job submission facility in which the user 
delegates its credentials to GRAM which then 
automatically obtains an execution environment for 
the user, executes the request, and terminates the 
environment. Since the DUE is destroyed, this 
mechanism does not allow the user to preserve state 
between different executions but provides a 
significant simplification. 

C 367 ?$ple$ent'tions 

We expect that the DUE implementations will be 
chosen based on the security, performance, cost and 
flexibility requirements of different sites. We have 
investigated a range of different options and decided 
to focus on a group of implementations meeting the 
following criteria: 
! G&%&"),+*3: in order to accommodate the largest 

possible set of codes, the implementation should 
be generic rather than focused on a specific 
technology or language (such as the Java Uirtual 
Machine (JUM) [20] for example).  

! N$%-+%9)7+9&: while techniques such as software 
fault isolation [21, 22], and proof-carrying code 
[22] are viable options for DUE implementation 
they require the system to modifying binary or 
source of application code which may not be 
acceptable to some Grid users. 
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! P"$*&6*+$%: the DUE implementation should 
provide suitable levels of protection between 
users (not allowing users read each other’s files 
for example) as well as between the user and 
resource (not allowing a user to gain superuser 
privileges on a resource) 

! E%;$"6&5&%*: an implementation should offer a 
range of enforcement options, i.e., allow 
enforcing disk quotas or CPU share. 

! S*)*&: the ability to preserve state associated with 
a specific environment, ranging from 
environment settings to execution state, is an 
important option of execution environments 
especially if we consider migrating them 
between resources.  

Given these criteria, our exploration of 
technologies focused on three kinds of technologies: 
Unix accounts, sandboxes and virtual machines. 
Sandboxes provide secure environments restricting 
executing code to a certain protection environment. 
"ernel-level sandboxes [23, 24] are efficient, but are 
possible only where the kernel is available for 
modification and require sites to run a custom 
installation of the operating system. User-level 
sandboxes [25, 26] rely on finding a way to prevent 
the user from bypassing the interception mechanism 
which is typically expensive (on the order of 40f for 
ptrace-based systems [27]). For our evaluation, we 
selected the UServer technology [7] using kernel-
level modifications (also used by PlanetLab [15]). 
Unlike a sandbox which strives only to confine a 
user’s activity on a given machine to a limited subset 
of a resource, a virtual machine (UM) provides an 
abstraction of the physical system itself so that 
multiple operating system can coexist on the actual 
machine sharing its resources. In our original 
experiments, we started out with User Mode Linux 
(UML) [28] but encountered difficulties running 
certain Java software packages. UMware [5] proved 
a more reliable choice.  

The sections below contain a description of the 
implementation of the DUEs for each of the three 
local enforcement vehicle used: Unix accounts, 
UServer, and UMware. The implementation aspects 
include environment creation/deployment, 
destruction, and the management aspects specific to 
each technology. Another common feature of interest 
is how a Grid coordination entity on a given machine 
(such as a local GRAM installation needed to start 
jobs) can interact with those implementations (for 
example: start a user hosting environment). Although 
we currently deploy DUEs on creation, we also 
investigated capability of a technology for preserving 

state to accommodate cases where a DUE could be 
redeployed in a different setting. 

CA> Kni+ =ccounts 's 367 ?$ple$ent'tion 

Unix accounts [9-13] can be created dynamically 
using standard systems tools, or allocated from a pool 
of pre-generated accounts. The former approach has 
the advantage that accounts can be flexibly created 
based on need, but requires a secure process for 
account creation. In addition, depending on the 
mechanism used, the implementation needs to be 
careful to respect the assumptions of a local account 
management system. Pre-generating accounts is 
limited in the number of users this method can 
service. Using either method, we want to avoid 
mapping two different Grid identities to the same 
local account in order to avoid problems of audit. 

In our current implementation, we create accounts 
on the fly by modifying the system password file. We 
could also update a NIS/YP password database to 
create accounts valid across a cluster. To destroy an 
account, all processes running under the account are 
killed, all files associated with the account are erased, 
and then the corresponding entry is removed from the 
password file. In order to avoid the need for a system 
sweep every time an account is destroyed, accounts 
are created with limited write privileges.  

The enforcement capabilities offered by standard 
Unix tools are limited. Disk space usage can be 
enforced dynamically by using the !uota command. 
In addition, chroot restricts a user to a subtree of 
the host filesystem which can be useful if we want to 
restrict the account to its home directory. The 
setrlimit system call is available for setting more 
fine-grain limits on maximum CPU time, file size, 
memory usage and number of open files and 
processes, but few operating systems fully enforce 
the limits.  

The static user state for a Unix account is 
relatively easy to manage: files belonging to a certain 
account (including symbolic links) can be stored in a 
designated place. The management of execution state 
would require further support from the local system 
in the form of checkpointing procedures.  

CA@ 6&er8er 's 367 ?$ple$ent'tion 

UServer [7] provides Linux kernel-based virtual 
servers via the addition of security contexts to the 
kernel, a small number of new system calls, and 
management utilities. Inside a UServer security 
context, processes can only see other processes in the 



same context, superuser capabilities are restricted, 
filesystem access may be confined to a subtree of the 
server’s filesystem, and networking and interprocess 
communication can also be restricted. 

Creating a new UServer DUE involves creating a 
root filesystem for the UServer. To do that, a copy of 
a precreated minimal filesystem (containing GT3 and 
supporting software and libraries) is made. To reduce 
disk space usage (as well as copy time), hard links 
are used rather than a true copy, and file attributes are 
set such that a user (including “root”) in one UServer 
cannot modify files shared by other UServers. 
However, with the immutable attribute set, not only 
can a file not be modified, but it cannot be removed 
and replaced with a modifiable copy, either. To 
remedy this, the UServer kernel patch introduces a 
new attribute bit, immutable-linkage-invert, which 
when set allows immutable files to be unlinked, so 
that UServer users may remove and replace files 
within their own filesystem tree without affecting 
other UServers. Once the UServer root filesystem is 
ready, it can be activated by establishing a 
corresponding new security context, and launching 
the user hosting environment inside that context. To 
destroy a UServer environment, all processes running 
in the associated security context are terminated, and 
the corresponding filesystem tree is deleted. 

Since all processes associated with a UServer 
environment share a unique security context ID, the 
kernel scheduler could potentially be modified to 
enforce per-environment CPU utilization limits. The 
current implementation simply prevents one UServer 
from starving another, but could be extended. 
Likewise, the possibility exists for adding per-
environment memory usage enforcement. Per-
environment disk usage is enforced via per-context 
quotas, an extension of standard user/group quotas. 
Optionally, network usage is restricted by binding 
environments to separate IP addresses and then using 
the Linux kernel firewalling and traffic shaping 
capabilities exactly as for the UMware DUE 
implementation. 

UServer does not provide capabilities for state 
management beyond that provided by a Unix 
account. 

CAC 6MI're 's 367 ?$ple$ent'tion 

UMware [5] is a commercial virtual machine 
implementation available in server and workstation 
versions. For our evaluation we used the workstation 
version. Physically, the UMware virtual machine 
consists of a directory on the host containing a set of 

files, including UM configuration information and 
virtual disk image(s).  

In order to avoid repeating installation 
information for each DUE creation, we precreated a 
“master” UMware virtual disk, with a minimal Linux 
and GT3 installation, which is then used by the 
individual sessions. The UM-based DUE is activated 
by a launching script similar to the one used in the 
Unix account implementation. Inside the UM, at the 
end of the boot sequence, the user hosting 
environment is then created. Its creation is 
complicated by the fact that command-line arguments 
required by the hosting environment for initialization 
can no longer be passed to it directly from the 
launching script, because the launching script and 
hosting environment are running on two separate 
machines. For reasons of simplicity, we 
circumvented this problem by passing the 
information covertly (by encoding information in the 
MAC address of the virtual machine, which is 
modifiable), although implementing a DHCP-like 
discovery service would provide a more elegant 
solution.  

The deactivation process is complicated by the 
fact that UMware Workstation provides no published 
interface for shutting down a particular UM from the 
host. Our workaround was to run a shutdown service 
inside the UM, which the host could then contact to 
shut down the UM. This works as long as the user 
owning the UM does not have root access inside the 
UM (otherwise he could kill the shutdown service). 
Once the UM is no longer running, a DUE may be 
destroyed by deleting the directory on the host 
containing the files corresponding to the UM. 

UMware provides only static enforcement of 
memory and disk usage. UMware workstation also 
does not support any capability for CPU 
management. (This capability is supported by 
UMware ESk Server.) If multiple virtual machines 
are used, UMware can be configured to use 
NAT/bridged network Since each UM has its own 
virtual MAC and IP address, the host can do full 
firewalling and traffic shaping per-UM (for the Linux 
capabilities, see [29]). In this setting difficulties arise 
due to the fact that the UM’s private IP address 
and/or port number may be exposed at a higher level 
in the network protocol stack (for example as part of 
the Grid Service Handle (GSH)), which standard 
NAT cannot handle. We managed to deal with them 
to some extent through careful configuration of the 
toolkit.  

Finally, while UMware does implement a 
promising solution for user state preservation and 
restoration, we were unfortunately not able to take 



advantage of it because the product does not expose a 
protocol for accessing it but exposes it only through a 
Graphical User Interface (GUI).  

F Bo$p'rison  

In addition to qualitative comparison of different 
implementations, we conducted a quantitative 
analysis estimating the impact of different 
implementations on the user programs run within 
those environments as well as their efficiency of 
resource usage. We conducted our evaluation on a 
Pentium 4 3.0 GHz machine with 1 GB RAM, 
running Red Hat Linux 9.0 (kernel 2.4.22, gcc 3.2.2) 
and Globus Toolkit 3.0.2. We implemented DSUs 
using Linux accounts, UServer 0.26, and UMware 
Workstation 4.0.5. 

We first estimated the impact on the performance 
using as benchmark a scientific compute-intensive 
application called EFIT [30] representative of the 
needs of one of the experimental communities using 
Grids. The application is mostly CPU-bound with 
minimal access to disk.  
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Figure 2: Comparison of different EFIT runs 
executing directly on Unix, under UServer and 
UMware. The times on Y axis are normalized to the 
Unix run. 

The results summarized in Figure 2 show 
execution times directly over the operating system, 
under UServer, and under UMware. Each grouping 
represents runs for different dataset and application 
configurations. For each run, the data shows the 
mean of five runs per selected data set, normalized to 
the execution time directly on the operating system. 
The runs took approximately 100 sec each, with 
standard deviations between 0.2 sec and 1.2 sec. 
UMware runs took 6f longer; there was no 
statistically significant difference between direct 
operating system runs and UServer runs. The time 
shown includes the application execution time only, 
as measured via the gettimeofday() system call, and 
does not include DUE creation times. The 
measurements confirm the result presented in [8]; the 

performance impact of the selected enforcement 
technologies on compute bound applications is 
relatively small.  

We next compared create/destroy times for the 
different technologies as shown in Table 1. 
Measurements do not include time taken to invoke 
the factory service, which is independent of the 
implementation type, but simply represents the time 
elapsed for the implementation-specific callout for 
environment creation (as measured within 
theservice). 

Table 1: DUE create/destroy times 
 Linux UServer UMware 
Create 100 ms 360 ms 14-52 sec 
Destroy 70 ms 200 ms 3-38 sec 
Creating both UServer and UMware DUEs 

involves creating a new file system root. Our file 
system size was just under 300 MB, including: (1) 
minimal Red Hat 9.0 (with stripped-down /bin, /dev, 
/etc, /lib, /proc, /sbin, /var): 14,636 "B, (2) Perl 5.6.1 
(used by GT3 job execution components): 29,728 
"B, (3) Java 2 Runtime Environment 1.4.2: 60,320 
"B, and (4) Globus Toolkit 3.0.2: 188,408 "B. 
Because UServer uses a copy-on-write technique, 
environment creation time as compared to that of 
UMware is drastically reduced. Another interesting 
measure is the overhead used by these technologies, 
in other words, a measure of how efficiently they use 
the resource. The results are summarized in Table 2. 

For UServer, there is in fact a very small amount 
of memory and CPU overhead resulting from the 
UServer kernel modifications: the kernel must track 
which security context a process is associated with, 
and incurs slight overhead in checking the security 
context inside relevant system calls. However, this 
overhead was sufficiently small as to not show up in 
our measurements, and is therefore listed as 
negligible. While both technologies induce some 
overhead of resource usage, for UMware this 
overhead is significantly larger.  
   Table 3 summarizes the qualitative differences 
among the different technologies. Both UServer and 
UMware offer substantial improvement over plain 
accounts in terms of protection and sharing. UServer 
allows the creation of separate security contexts 
which restrict user privileges but allow for sharing of 
files. However, all contexts still share the same 
kernel. UMware allows each execution environment 
to run its own kernel. This requires repeating all 
required software installations for each UM running 
on the machine: an inconvenience compounded by 
potential licensing issues. UServer offers dynamic 
enforcement capabilities (or potential of such  



 

 
capabilities), UMware has only limited static 
enforcement capabilities. This however is not the 
case for other virtual machine technologies [6]. 
Although UServer presents a more lightweight 
solution in terms of performance, its impact, at least 
in our experience, is not significant and can be 
expected to decrease as the technology improves. To 
balance this, virtual machines offer the potential for 
better user state management, which could have 
significant benefits for implementing migration in the 
Grid environment.  

L Bonclusions  

We strongly believe that in order to become 
successful Grids will need the ability to create and 
manage remote execution environments dynamically 
and effortlessly. Rather than imposing one 
implementation, these environments should be able 
to rely on a mix of technologies as acceptable to site 
administrators, users and suitable for specific 
problems. Different implementations will provide 
different functionality ranging from a simple 
execution environment to a high degree of 
customization (including running the required 
operating system kernel on any resource possible 
through the agency of true virtual machines). 
Different implementations entail different trade-offs 
in terms of efficiency, cost, configurability, quality of 
protection and other characteristics as discussed 
above. 

Our exploration of three such implementations 
shows that all are roughly acceptable from the point 
of view of efficiency for a Grid application without 
strong I/O demands. All have shortcomings in the 
area of QoS enforcement, but those could potentially 
be fixed by similar technologies or more advanced 
versions of the same software. The issue of sharing 
between the environments presents an interesting 
trade-off: on one hand virtual machines allow users 
to customize their environments once and then port 
them across different machines, on the other this 
practice will lead to bulky installations and potential 
duplication of much of the software on one real 
resource. In those cases, software allowing sharing 
between environments, such as UServer, can lead to 
more lightweight solutions, but dependent on a 
shared infrastructure maintained on a resource by, for 
example, the UO. 

Finally, it is clear that some of the current 
execution environment examples were not designed 
with Grids in mind (the lack of exposed protocols in 
UMware workstation is an example). While more 
research is necessary in order to fully determine the 
requirements for an ideal sandbox implementation to 
put in the Grid playground, the Grid technologies 
themselves will also have to change. The widespread 
use of remotely created virtual environments, if 
successful, will shift trust from the account screening 
process typically applied by the resource owner to 
screening process implemented by a virtual 

Table 2: Resource overheads (over Linux) of DUE implementations 
 UServer UMware 

Disk overhead Small: approximately 0.5f Large: 150f - 200f 
Memory overhead Negligible Large: 24MB m 1 MB per 32 MB memory allocated per 

UM 
CPU overhead Negligible Depends on application characteristics (5f and up) 

Network overhead Only when restricting 
access 

Yes: depends on network configuration 

Table 3: Enforcement capabilities of selected DUE implementations 
 Unix account UServer UMware 

CPU usage (seconds) Uia setrlimit() Not at present, but could be added Not enforced 
CPU usage (percent) Not enforced Limited: no UServer can starve 

another 
Not in UMware Workstation, 

but enforced in UMware Server 
Disk space usage Dynamically 

(per-user quotas) 
Dynamically (per-context quotas) Statically (virtual disks) 

Memory usage No Not at present, but could be added Statically 
Network usage No Dynamically (binding contexts to 

specific IP addresses) 
Dynamically (via UM 

configuration and host firewall) 



organization which will thereby acquire more 
importance as well as responsibility.  
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